Pre-class Warm-up!!! functions
Which of the following mappings $\mathrm{R}^{\wedge} 2 \rightarrow \mathrm{R}^{\wedge} 2$ are one-to-one?
Which are onto?
a. $T(x, y)=(x+y, 0)$
b. $T(x, y)=(x, 2 y)$

No	No
Yes	Yes

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is onto means every (x, y) in \mathbb{R}^{2} can be written $(x, y)=f(u, v)$ for same u, v

As it says on the Canvas site, the exam on Tuesday covers everything through 8.1 since the last exam, namely $5.1-5.5,4.1-4.4,7.1,7.2,8.1$
f is $1-1$ means if $f(x, y)=f\left(x^{\prime} y^{\prime}\right)$ then $(x, y)=\left(x^{\prime}, y^{\prime}\right)$.

In cafe b. $(x, y)=T\left(x, \frac{1}{2} y\right)$ shows T is onto
In call a. $(0,1)$ is not in the image of T so T is not onto. $T\left(\mathbb{R}^{2}\right)$

Section 6.1 The geometry of maps $R \wedge 2->R \wedge 2$
We learn

- the meaning of one-to-one and onto
- Linear maps take straight lines to straight lines, hence parallelograms to parallelograms
- Polar coordinates in 2 dimensions
- Linear maps are 1-1 $<=>$ their matrix has det $\neq 0<\Rightarrow$ they are onto

Types of question:

- Find whether the given map is 1-1 or onto (or both)
- Find a linear map sending a given parallelogram to another parallelogram

In the book, linear maps $f: R \wedge n->R \wedge m$ are mappings given by matrix multiplication:

$$
f(v)=A v
$$

where v is a vector in $R^{\wedge} n$ and A is an $m \times n$ matrix.

Example: $f(x, y)=(x+y, x-y)$ is linear (see below). Only $t_{\text {, }}$, multiplication by scalars are allow.

Example: Let $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$. Then for any vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ we get a linear'map

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=A\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x+y \\
x-y
\end{array}\right]
$$

Theorem. Linear maps take straight lines to straight lines, or single points.

Proof, Take a straight line $c(t)=u+t v$ through u, in direction v. Apply a mabuse A. $A c(t)=A(u+t v)=A u+t A v$ is the line passing through Au, in direction Av

Describe the f on the left

Question:
Which matrix A expresses the mapping

$$
f(x, y)=(2 x+3 y, 4 x+y)
$$

in the matrix form $f(v)=A v$?
Ja. $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right]$
b. $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 1\end{array}\right]$
c. $A=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]$
d. $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right]$
e. None of the above
2. What about $f(x, y)=\left(x^{2}+y^{3}, x^{4}+y\right)$? not linear.

How to find $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
compute $f(1,0)=(2,4)$

$$
f(0,1)=(3,1)
$$

This means $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}a \\ c\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
b \\
d
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Examples:

1. Determine if the mapping $T: R^{\wedge} 2->R^{\wedge} 2$ is 1-1 and/or onto.

$$
T(x, y)=(x+y, 0) ; T(x, y)=(2 x+y, y)
$$

2. Find a linear map T that sends the parallelogram with vertices

$$
(0,0),(1,1),(1,2),(2,3)
$$

to the parallelogram with vertices

$$
(0,0),(-1,0),(-1,2),(-2,2)
$$

We want $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ so that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

80

$$
\begin{array}{ll}
a+b=-1 & a+2 b=-1 \\
c+d=0 & c+2 d=2
\end{array}
$$

Solve these.

Planar polar coordinates (r, t) refer to points with (x, y)-coordinates $(r \cos t, r \sin t)$ and can be regarded as a transformation $R \wedge 2->R \wedge 2$ given by
$T(r, t)=(r \cos t, r \sin t)$
T is not $1-1$.
It can be regarded as mapping rectangles to circles:

$$
T(r, \theta)=(r \cos \theta, r \sin \theta)
$$

